PROTEST – Procedures for Testing and Measuring Wind Energy Systems Drive Train Case Study II

Holger Söker, DEWI GmbH

SITE ASSESSMENT . WIND TURBINE ASSESSMENT . GRID INTEGRATION . DUE DILIGENCE . KNOWLEDGE . CONSULTANCY

PROTEST – Background Information

PROcedures for **TEST**ing and measuring wind energy systems

• Collaborative Project in the EU-FP7

- BUDGET: 2.7 Mio €
- Start: March 2007 End: Sept. 2010
- Participants:
 ECN (NL) project co-ordinator, Suzlon Energy GmbH (DE), DEWI (DE),
 Germanischer Lloyd (DE),
 Hansen Transmissions International (BE),
 University of Stuttgart (DE),
 CRES (GR)

PROcedures for **TEST**ing and measuring wind energy systems

Focus on mechanical systems: fail not very often but O&M cost dominated by repair of failed mechanical systems like

PROTEST – Motivation

PROcedures for **TEST**ing and measuring wind energy systems

While design procedures for blades and towers are detailed

Such for other mechancial components are rather vague

PROcedures for **TEST**ing and measuring wind energy systems

DEWI Quality by Know-how.

PROTEST – Approach

IEC61400-13 Approach seemed to be not adequate impossible to define a rigid testing procedure with fixed channels and sampling rates!

6-STEP Approach allows for

- different design and concepts
- different computational models
- allows flexibility to serve the model validation task

PROTEST- WP5 Case Study on Drive Train

Application of the six-step-approach for validation of a wind turbine drive train

- > design & run SIMPACK model
- > validate SIMPACK model against validated FLEX5
- > sensitivity study of model input parameters
- > measurement strategy for model validation
- > measurement data processing and analysis
- > methods to estimate model parameters from measurements
- > comparison of SIMPACK model results/measurements

No special failure mode was chosen as the main focus was set on testing >the process of model design >measurement set-up >methods of data processing >validation of designed models

six-step-approach STEP 2: design model

Page <u>8</u>

six-step-approach STEP 2: design model

⊃age 9

SIMPACK model - stage2 sophisticated model

six-step-approach STEP 4: determine relevant parameter

- Sensitivity Analysis on gives information on the effect of input input parameters uncertainty on simulation results
- > starting point for measurement campaign (STEP 5)

<u>1st approach:</u>

vary model parameter (e.g. high speed shaft stiffness) run a modal analysis observe the change of the resulting eigenfrequencies and eigenmodes judge what uncertainty is acceptable

<u>2nd approach</u>:

vary model parameter run load simulation for relevant DLC's analyze results i.t.o. load statistics, Rainflow count judge what uncertainty is acceptable.

Identify critical failu mode turbine type : 2. Design model(s) Suzlon Energy S82 / 1500kW 3. Run DLC's rotor diameter: 82m 4. Input, output & certainty gear box: Adjust model' Hansen, EH751A site: 5. set-up measur campaigr Tamil Nadu/India Process measure data and check/impro models hange/ad signals? Adjust model Report

six-step-approach STEP 5: measurement campaign

Measurement setup

standard IEC 61400-13 load signals

- > blade loads (root beding edgewise, flapwise)
- > main shaft loads (bending and torque LSS)
- > tower top torsion
- > tower base bending
- sampling rate 50Hz

www.dewi.de

for drive train model validation, load validation

- > shaft speeds and torques
- > displacements of gearbox housing
- > temperatures of bearings and oil
- > oil pressures

Rotational speed measurements

six-step-approach STEP 5: measurement campaign

Quality by Know-how.

Focus on model validation manned measurements to capture specific measurement load cases MLC

December 2008, June 2010

contiuous monitoring to capture normal power production MLCs

December 2008, June 2010

	Step	Quantity to Check	Example for Methods	Objective of Validation Step	1. Identify critical failure modes
5	1	 Documentation Selected Time Series 	 Comparison of model data against weighing log Spectral analysis of selected time series for various operational states (e.g. in partial and full load) 	 Main structural properties like masses, stiffnesses, eigenfrequencies and coupled modes 	2. Design model(s) 3. Run DLC's 4. Input, output & yei certainty
	2	Characteristic Curves	 Visual comparison of curves of operational parameters (e.g. speed, power) and loading for several environmental conditions 	Validation of basic control characteristics and rotor aerodynamics as well as mechanical and electrical parameters (e.g. losses)	Adjust model?
	3	Time Series of various operational states, like • power production • start • stop • emergency stop	 Visual comparison of data in time and frequency domain Check of statistical properties of data Analysis of decay rates of oscillations during stopping procedures 	 Dynamic behaviour all important and assessable operational states with focus on aerodynamic mode, controller model and actuator models Structural and aerodynamic damping 	6. Process measurement data and check/improve models Change/add signals? no Adjust model?
	4	Post-Processed Data	Comparison of loading spectra like • rainflow distribution • load duration distributions • damage equivalent loads	 Final check of turbine behaviour and dynamic properties Check of all previously performed validation steps 	no Report

Normal transients in manual campaign

Run-up

NTH Constant speed at X RPM - no generator connection = idling (=> X is in the range [100 - 1750 RPM] - generator side)

, six-step-approach STEP 5: measurement campaign

Special transients in manual campaign

Resonance

STF Constant speed at Y RPM - power production (=> Y is in the range [1500 - 1600 RPM] - generator side => adapted FLEXISLIP)

Operation at constant power levels

STJ Constant power production at Z kW (=> Z is in the range [750 - 1500 kW])

COOPERATION

avaitation fraguanaiaa

Selected Time Series: Operation at different load levels for Eigenfrequency determination

excitation frequencies					
	rotational speed [rpm]	exitation fequenc [Hz]			
generator	1495.2	24.92			
rotor 1st order	15.7	0.26			
rotor 3rd order	47.1	0.79			
rotor 6st order	94.2	1.57			

Quality by Know-how.

Selected Time Series: Run-up for Eigenfrequency determination

: high speed shaft rotating frequency
: intermediate speed shaft rotating frequency
: low speed shaft rotating frequency
: rotor-main shaft-planet carrier rotating frequency
: high speed stage meshing frequency (ISS – HSS)
: intermediate speed stage meshing frequency (LSS – ISS)
: low speed stage meshing frequency (planetary stage)

six-step-approach STEP 5: measurement campaign

Selected Time Series: Deliberate resonance (modified control parameters)

Selected Time Series: Stiffness determination - deterministic approach

analysed data: resonance case

Selected Time Series: Stiffness determination - Stochastic approach

h:m:s

Page 21

Post- Processed Data: Rainflow Count

RFC's indicate high variations in mechanical torque around rated torque

 \rightarrow further investigation is required to determine (1) the impact and (2) ability of the FLEX5 simulation model to consider this effect

∽ Trot_StDev □ Trot_EQL

8 monitoring statistics 2009

kNm

Trot_EQL × Trot_StDev

DEWI Quality by Know-how.

Impact clearly visible in Torque Load Range Spectra

TU 7% TU11%

Trot_TaL_Fatigue_TU07 Trot_TaL_Fatigue_TU11 % Relative frequency TaL_tu07 Trot_TaL_tu11 2009 2008 0.20 0.2 Toroque lever 0.40 0.4 1.00 1.0 ە.ە 0.0 1.20 MNm1.2 MNm

Impact clearly visible in Time @ Level Plots

Conclusions

- >sensitivity studies to define relevant model input parameters (like inertia, stiffness, damping) are important to setup measurement campaigns
- > measurements for model parameter validation have been carried out
- b different methods to determine eigenfrequencies, stiffness, damping and intertia have been developed and applied
- stiffness values are reproduced
- > all methods show similar trends with respect to inertia and damping values
- > further investigations on the applied methods are needed

Birte-Marie Ehlers, Florian Stache SUZLON Energy GmbH, Rostock, Germany, +49 381 203578 592, birte.ehlers@suzlon.com, florian.stache@suzlon.com,

Kris Smolders, Joris Peeters Hansen Transmissions International nv, Lommel, Belgium, +32 11 54 9412, KSmolders@HansenTransmissions.com, peeters@hansentransmissions.com

Thomas Hequet, Stiftungslehrstuhl Windenergie, Stuttgart, Germany, +49-711-685 68240, <u>thomas.hecquet@ifb.uni-stuttgart.de</u>

Holger Söker, Oscar Monux, DEWI GmbH, Wilhelmshaven, Germany, +49 4421-4808-825, <u>h.soeker@dewi.de</u>, <u>o.monux@dewi.de</u>

SWE Stiftungslehrstuhl Windenergie am Institut für Flugzeugbau

Thank you!

